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LETTER TO THE EDITOR 

A new systematic approach to the decay on an unstable state 
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Institute of Physics, Nicholas Copernicus University, Grudziadzka 5,87-100 Torun, Poland 

Received 24 November 1988 

Abstract. To describe a decay on an unstable state, a new systematic procedure is proposed 
for solving the Fokker-Planck equation with a small noise strength. The approximation 
assumes the correct small-time evolution and the Gaussian fluctuations around the most 
probable path for larger times. The exact stationary distribution is reached. The method 
may be easily adapted for calculating the multi-time correlatign functions. 

In recent years the temporal behaviour of a system initially prepared in an unstable 
state has been investigated very intensively. The approaches include numerical [ 1-31, 
strictly analytical [4-71, analytical with some empirical parameters [8] and stochastic 
[9] methods. The complexity of the problem lies in the fact that it is the fluctuations 
that initiate the evolution so they must be considered simultaneously with the deter- 
ministic forces. 

The state of a system may be described by a probability density function W(x", t)  
the evolution of which is given by the Fokker-Planck (FP) equation 

a' aw a 
at ax" ax"' U'(x")W+q- w _- - -- 

where q is a diffusion constant and -CO<?< +CO. In the simplest case the potential 
U(?) has the (symmetrical) form 

U (  x") = $4 - $22. (2) 

Starting from its unstable state x" = 0, the system tends to one of its potential minima 
x" = *l. Because of the noise there is a finite probability of finding the system in each 
potential well. 

There are some physical situations (e.g. in quantum optics) in which the variable 
describing the system is non-negative. In such a case the simplest model corresponding 
to (1) and (2) is given by a FP equation 

a w(x9 t ,  = L ( x )  W(x,  t )  
a t  

with a FP operator L ( x )  

a a a  
L(x)  = 2 - x ( x -  u)+4q-  x -  

ax ax ax 

(3) 

(4) 

where x = 2'. Now the system evolves from its unstable state x = 0 to the single stable 
state x = 1. 
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Almost all [4-61 of the analytical methods mentioned above deal with equations 
and (2). Among them Haake [6] neglects the stationary fluctuations and Suzuki 
outlines a method rather than giving a precise recipe (there is an arbitrarily chosen 

function in his final expression). Mizerski [7] formulates a method which seems to 
work quite well (compared with others) in the critical region but yields an incorrect 
small-time description. In this letter some analytic formulae providing the correct 
small-time and exact stationary description of (3) are proposed for the small-noise 
( q  << 1) approximation. 

A formal solution of (3) is 

W(x, t)  = exp(l(x) t )  W(x, 0) ( 5 )  

with the initial condition for the probability density 

W(x,O)= lim S(x-x'). 
X'-rO+ 

The evolution of the kth moment is thus given by 

( x k ) =  lom dxxk  exp(l(x) t )  W(x, 0). (7) 

As is known (e.g. [3]) the linearised FP operator describes well the very beginning 
of evolution-it completely determines the first two terms of a time power expansion 
of the kth moment 

( x k )  = k! (4q t )k  + kk!(4q)ktk+1 +0( t k + 2 ) .  (8) 

In such a case the evolution operator of (5) may be approximated as 

exp[l(x)t] = exp 

= exp (-2 x t )  exp(lin(x, t ) )  

with 

a a  a d  
&(x, t )  = 2q(1 -e-2') - x-= q p ( t )  - x- 

ax ax ax ax 

( 9 )  

The factorisation made in (9) separates the linearised drift operator and the diffusion 
constant q. Thus for the initial regime and for the intermediate time regime, where 
(far from the critical region) the evolution may be described strictly deterministically, 
the evolution operator will be approximated by 

e x ~ [ U x ) t l =  exp(lo(x)t) exp(Lin(x9 t ) )  (11) 
where Lo(x)  is the drift part of the FP operator. This expression is just the quasideter- 
ministic theory of de Pasquale et a1 [9] in the FP equation language. The inconvenience 
of that treatment is that the fluctuations are taken into account only at the beginning 
of the evolution-they are completely neglected in the description of the stationary state. 

In the following we somewhat modify this theory to obtain the exact stationary 
distribution function. As it results from the above consideration, the two operators 
standing on the RHS of (11) describe well the initiating role of the fluctuations and 
the intermediate time regime of evolution. Therefore we can extract them to the right 
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Here the dot denotes the time derivative. The functions 4(x, t )  and +(x, t )  are given 
by the differential equations: 

4 = - 2 4 4 4  - 1) 4(x,  0) = x (15) 

4 = 2 ( 2 4  - 1)+ +(x, 0) = 1. (16) 

4(x, t )  = x/[x + (1 - x) e-"] (17) 

Expression (15) is the deterministic equation with the solution 

and the function +(x, t )  is given as the inverse of a4lax. The functions 4 and + 
occuring in (14) are taken for negative time --s for which the solution of (15) may not 
exist. However, one must treat them rather formally because in the final expression 
the operator exp(Lo(x)t) acts on T(x, t )  (see (12)) changing the x variable by +(x, t )  
while, as follows from (13), s s  t. Thus in (14) we deal with functions C$ and + for 
the time moment -s but with an initial condition +(x, t )  so one is always on the 
positive part of the deterministic trajectory. 

From the comparison of (12) and (11) it follows that the operator T(x, t )  describes 
the fluctuation of the final and partially of the intermediate time regimes. Inserting 
the unity operator I," dp 6(x -p) into the RHS of (12) and introducing a new variable 

we have 
z = &-](X- 4 ( y ,  t ) )  & = q' /2  (18) 

e x ~ ( l ( x ) t )  = T(x, t )  dya(x -y )  exp(b(y) t )  exp(Lin(y, t ) )  JOm 
= jOm dy ~ ( y  + EZ, t ) a ( E Z )  exp(Lo(y)t> exp(l,n(y, t ) ) .  (19) 
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Since the operator exp(L,(y)t), acting to the left on the variable y, gives a deterministic 
trajectory r$(y, t) ,  the new variable z means a rescaled deviation from it. Thus if we 
are far enough from the critical region the operator i ( z ,  y ,  s) = i ( y  + EZ, s)  may be 
expanded in powers of E 

i ( ,  y ,  S)  =6p(s)+’(y, - ~ ) r $ ~ ( y ,  - s ) a 2 / a z 2 + o ( E ) .  (20) 
The lowest-order approximation of the operator f ( z ,  y, t )  = T ( y  + EZ, t )  is thus given as 

= 24y2[( 1 - y)’t ++( 1 - y ) ( 3 y  - 1)( 1 -e-’*) 

+ $y ( 3 y  - 2) ( 1 - e-4f ) - :y’( 1 - e-6‘ )I. 
One may easily notice that a ( y ,  t)  is positive for all positive y and t. Summarising all 
the above, the approximate expression for the formal solution of the exact problem 
( 5 )  is 

a’ 
w(X, t )  jm dy exp (iqa(y, t )  2) ~ ( x - y )  exp(~o(y) t )  exp(Lin(y, t ) ) ~ ( y ,  0) 

0 

= :{ exp ( 4 4 s  a ( x ,  t ) ) } :  exp(Lo(x)t) exp(Lin(x, 2 ) )  w ( X y  0) (23) 

where : : means the ordering operation (all the differentiation operators a/ax stand to 
the left). Thus the evolution operator is factorised into three parts. The role of each 
of them may be better seen if one considers the expressions for the distribution function 
and its moments. 

The smallness of E gives the possibility to write the distribution function W(x,  t )  
(23) approximately. The varia!le z belongs to the interval [ + / E ,  +a). If the lower 
boundary is -CO the operator T ( z ,  y, f )  acts on S ( E Z )  giving a Gaussian function with 
a zero mean and a ( d ,  t )  as a variance. Since, however, this lower boundary is still 
finite, we obtain a Gaussian-like function with the normalisation constant 

Here erf is the error function [lo]. Now the distribution function takes the form 

The bracket ( )in means averaging over the probability distribution 

reflecting the influence of the fluctuations, which begin the evolution, on the initial 
distribution function. We can easily observe that this expression gives the correct 
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stationary solution of (3). The above Gaussian approximation does not disturb the 
previous E expansion since, as long as we are far from the critical region ( q  << l ) ,  it 
creates the corrections of order of exp( - l / q ) .  

The first two moments obtained from (25) are 

I f  one uses expression (23) for the calculation of the moments one will obtain formulae 
like (27) and (28) but without the terms including the normalisation constant N ( 4 ,  t ) .  
However, as mentioned above, these terms do not contribute essentially. 

Returning to the discussion of the expression (23) we can see that the third operator 
on its RHS gives an averaging over Win(y, t ) ,  the second one introduces the deterministic 
trajectory 4 ( y ,  t )  for each initial point y, and the first one gives Gaussian fluctuations 
around this trajectory with the variance qa(4(y,  t ) ,  t ) .  One may check that for small 
time the evolution is governed really by the operator exp(Lin(y, t ) )  and the linearised 
operator exp( L,(y) t ) .  Since, as time tends to infinity, the deterministic trajectory 
+(y, t )  depends less and less on the initial condition y, the influence of Wi,(y, t )  on 
the final expression becomes smaller and smaller. On the other hand, the contribution 
of the function U(+, t )  continuously increases, leading to the correct stationary 
description. 

The time dependence of the mean (x) and its variance  AX)*)^ given by the formulae 
(27) and (28), are plotted in figures 1 and 2 for two values of the diffusion constant 
q. The present results are compared with the numerical ones [ l ,  31. As one expects, 
for small q the agreement between the two methods is quite good and the differences 
occur only in the intermediate time region. 

The inclusion of higher-order terms of the operator i ( z ,  y, s )  (20) should correct 
the results. For increasing q the discrepancy arises due to invalidity of the assumption 
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Figure 1. Time dependence of the mean value (x) for the diffusion constant q = & and 
q = & (these values correspond respectively to the values a = 4 and a = 8 of the Risken 
parameter a El]). The full curve represents the numerical result [1,3] and the broken 
curve is the present result of equation (27). 
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Figure 2. The same as in figure 1 but for the variance ((Ax)*) (the broken line represents 
the present result of equation (28)) 

on the evolution in the vicinity of the deterministic trajectory [ll]. Comparing this 
with the paper by Mizerski [7] one can see that an inappropriate small-time description 
makes the evolution faster, causing the curves displaying the time dependence of the 
mean (x) and its variance ((Ax)') to be shifted to the left, even for a small noise 
parameter. Thus we can see the importance of a proper description of the early stage 
of the evolution. 

It results from the above that the proposed method describes quite well the decay 
of an unstable state far enough from the critical region. A Gaussian approximation 
around the deterministic path used above is possible if the relation q << 1 holds. Since 
the stationary solution of (3) depends on x like a Gaussian function, our approximate 
procedure can give the exact stationary expressions. Here we can also notice the 
difference between the present method and that of Dekker [4], where an assumption 
about Gaussian fluctuations around the deterministic path is also employed. Since 
Dekker used 2 as a variable he obtained an approximate formula for the mean (x) = (Z2) 
only, and not for the variance ((AX)'). 

The proposed formalism seems to be especially useful for calculating the multi-time 
correlation functions. For example, the two-time correlation function is given, by the 
definition, as 

00 

g(t1 , t 2 )  = j dxx  exp[L(x)(t, - t2)1XW(X, f 2 )  t ,  3 t'. (29) 
0 

One may check that the drift part L,(x) is the leading part of the FP operator L(x) 
(4) in the evolution operator exp[L(x)( t l  - t 2 ) ] .  Thus we must extract the deterministic 
evolution operator exp[L,(x)( t l  - t2)] to the right from it. The remaining operator 
treated like the operator T(x, t )  (13), gives in the lowest-order approximation a formula 
similar to (21) but with the function 

ds W 2 ( Y ,  - S ) 4 ( Y ,  -SI 

= 8y[i(l - ~ ) ~ ( e ' '  - 1) +3y(l  -y)'t+$y'(y - I ) (  1 -e-")+:y3(1 -e-4')] 
(30) 
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instead of U. Using this approximation we have 

a2 
d f l ,  t 2 )  = jom dx jom dY exP[tqac(Y, t1- f 2 ) 1 2  6 b - Y )  exI?[~o(Y)(t, - f2)lYW(Y, f) 

= jom dY 44Y, f 1 -  f2)YW(Y, f2) (31) 

where the probability density function W(y, f2)  is given by ( 2 5 ) .  One can notice that 
in the above formula (31) the fluctuations enter through W(y, f2) only. In order to 
incorporate the fluctuations into the terms depending on the time difference t , - t 2  
one must use a higher-order approximation to calculate the evolution operator 

The present method can easily be generalised for an arbitrary problem given by a 
FP equation. The only restriction is that the stationary solution may be approximated 
by a Gaussian function for an adequately chosen variable which means that the system 
does not evolve in the critical region of parameters. 

exp[Ux)(t, - fd1. 

The author would like to express his gratitude to Professor S T Dembinski for several 
fruitful discussions and a critical reading of the manuscript. This work was partially 
supported by the Polish Government Grant, Project CPBP 01.03. 

References 

[l]  Risken H and Vollmer H D 1967 Z. Phys. 204 240 
[2] Risken H and Vollmer H D 1980 Z. Phys. B 39 89 
[3] Risken H 1984 The Fokker-Planck Equation (Berlin: Springer) 
[4] Dekker H 1982 Phys. Lett. 88A 279 
[5] Suzuki M 1983 Physica 117A 103 
[6] Haake F 1978 Phys. Rev. Lett. 41 1685 
[7] Mizerski J 1982 Z. Phys. B 49 173; 1983 Thesis University of Gdansk 
[8] Arimitsu T and Suzuki M 1978 Physica 93A 574 
[9] de Pasquale F, Tartaglia T and Tombesi P 1979 Physica 99A 581; 1981 Z. Phys. B 43 353; 1982 Phys. 

Rev. 25 466 
[lo] Abramovitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover) 
[ I l l  Gardiner C W 1983 Handbook of Stochastic Methods (Berlin: Springer) 


